An information-theoretic Central Limit Theorem for finitely susceptible FKG systems

نویسنده

  • Oliver Johnson
چکیده

We adapt arguments concerning entropy-theoretic convergence from the independent case to the case of FKG random variables. FKG systems are chosen since their dependence structure is controlled through covariance alone, though in the sequel we use many of the same arguments for weakly dependent random variables. As in previous work of Barron and Johnson, we consider random variables perturbed by small normals, since the FKG property gives us control of the resulting densities. We need to impose a finite susceptibility condition – that is, the covariance between one random variable and the sum of all the random variables should remain finite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8 Information inequalities and a dependent Central Limit Theorem Oliver Johnson

We adapt arguments concerning information-theoretic convergence in the Central Limit Theorem to the case of dependent random variables under Rosenblatt mixing conditions. The key is to work with random variables perturbed by the addition of a normal random variable, giving us good control of the joint density and the mixing coefficient. We strengthen results of Takano and of Carlen and Soffer t...

متن کامل

Some Results on Baer's Theorem

Baer has shown that, for a group G, finiteness of G=Zi(G) implies finiteness of ɣi+1(G). In this paper we will show that the converse is true provided that G=Zi(G) is finitely generated. In particular, when G is a finite nilpotent group we show that |G=Zi(G)| divides |ɣi+1(G)|d′ i(G), where d′i(G) =(d( G /Zi(G)))i.

متن کامل

The fractional Fisher information and the central limit theorem for stable laws

A new information-theoretic approach to the central limit theorem for stable laws is presented. The main novelty is the concept of relative fractional Fisher information, which shares most of the properties of the classical one, included Blachman-Stam type inequalities. These inequalities relate the fractional Fisher information of the sum of n independent random variables to the information co...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008